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The extension of strongly anisotropic or dynamical scaling to local scale 
invariance is investigated. For the special case of an anisotropy or dynamical 
exponent 0 = z  = 2, the group of local scale transformation considered is the 
Schr6dinger group, which can be obtained as the nonrelativistic limit of the 
conformal group. The requirement of Schr6dinger invariance determines the 
two-point function in the bulk and reduces the three-point function to a scaling 
form of a single variable. Scaling forms are also derived for the two-point func- 
tion close to a free surface which can be either spacelike or timelike. These 
results are reproduced in several exactly solvable statistical systems, namely the 
kinetic Ising model with Glauber dynamics, lattice diffusion, Lifshitz points in 
the spherical model, and critical dynamics of the spherical model with a non- 
conserved order parameter. For generic values of 0, evidence from higher-order 
Lifshitz points in the spherical model and from directed percolation suggests a 
simple scaling form of the two-point function. 

KEY WORDS: Anisotropic scaling; conformal invariance; Schr6dinger 
invariance; critical dynamics; response function. 

1. INTRODUCTION 

Scale  i n v a r i a n c e  is a c e n t r a l  n o t i o n  in p r e s e n t  t heo r i e s  of  cr i t ica l  b e h a v i o r .  

In  the  c o n t e x t  of  t w o - d i m e n s i o n a l ,  s ta t ic ,  a n d  i s o t r o p i c  cr i t ica l  b e h a v i o r ,  

these  ideas  h a v e  b e c o m e  s p e c t a c u l a r l y  successful  in the  c o n t e x t  of  con -  

f o r m a l  i nva r i ance .  I~1 T h e  m a i n  phys i ca l  idea  b e h i n d  th i s  is the  e x t e n s i o n  of  

the  c o v a r i a n c e  of  c o r r e l a t i o n  f u n c t i o n s  u n d e r  l e n g t h  r e sca l ing  by  a c o n s t a n t  

f ac to r  2 to  genera l ,  s p a c e - d e p e n d e n t  resca l ings  2(r) .  A c o o r d i n a t e  t r a n s -  
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formation ,1(r) is conformal if the angles are kept unchanged. In two 
dimensions, the conformal group is infinite-dimensional. This has led, for 
example, to the exact calculation of critical exponents and correlation 
functions and yields a handle for classifying two-dimensional universality 
classes (for reviews, see, e.g., ref. 2). 

Much less is known about nonisotropic scaling. Consider a (connected) 
correlation (response) function C(r; t) depending on "space" coordinates r 
and a "time" coordinate t which satisfies the scaling relation 

C(2r; `1~ = 2-2xC(r; t) (I .I)  

where x is a scaling dimension and 0 is referred to as the anisotropy expo-  
nent. Systems which satisfy Eq. (1.1) with 0 ~ 1 are by definition s trongly  
anisotropic critical sys tems.  In fact, dynamical scaling of this kind appears 
quite commonly in time-delayed averages close to an equilibrium phase 
transition, where the anisotropy exponent is referred to as the dynamical 
exponent z = 0, t3'4) or in domain growth problems of systems quenched at 
or below the equilibrium critical point (see refs. 5-7 and for a recent review 
ref. 8). Alternatively, strongly anisotropic scaling may arise in statics; 
examples are provided by directed percolation tgl or by magnetic systems at 
a Lifshitz point, ~~ where the anisotropy exponent 0 =  viJv  • is related to 
the critical exponents vtl.• of the correlation lengths ~li.• parallel and 
perpendicular to the preferred direction. Equation (1.1) can be recast in the 
form 

C(r; t) = t - 2x/~ (1.2) 

which defines the scaling function ~(u) and 

r o 

u = - -  (1.3) 
t 

is the scaling variable and henceforth we shall be always taking the scaling 
limit r ~ ~ ,  t ~ ~ where u is kept fixed. 

We ask the following question: what can be said about the scaling 
function ~(u)? Is it sensible to look beyond global scaling with ,l constant 
to a space-time-dependent rescaling factor ,1(r, t)? 

This question had been addressed by Cardy. ~1~) Assuming dynamical 
scaling for the dynamical response function, he takes as extended set of 
local scale transformations ,1(r) the space-dependent scaling r ~ ; t ( r ) r ,  
t ~ 2(r) ~ t, where the ,1(r) are two-dimensional conformal transformations. 
This means that only systems at a static critical point are considered. The 
assumed covariance of the response function is used to map the problem 
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from the two-dimensional plane (in the space coordinates) to the strip 
geometry, with a nonuniform rate. Next, since close to a static critical point 
the static correlation length of the system in the strip is of the same order 
of magnitude as its width, it is claimed that "on much larger distances it 
is permissible to use mean field theory to calculate the dynamic correlation 
function in the strip. "~11) For a system with a nonconserved order 
parameter the response function then turns out to be (~1) 

G(r, t ) ~ t -  z~/~ l exp ( - ~ )  (1.4) 

where some nonuniversal constants have been suppressed. The case of a 
conserved order parameter was also treated. While this result is appealingly 
simple, the assumptions made in deriving it may appear to be quite 
strong, 2 in particular, the use of mean-field (van Hove) theory. Also, one 
might wish to reconsider the assumption that 2(r) is time-independent. In 
fact, we shall study the scaling of the two-point function in (1 + 1)-dimen- 
sional directed percolation and higher-order Lifshitz points in the spherical 
model, both with 0 4: 2, and find that the form of the scaling function of 
these models does not agree with Eq. (1.4) (see Section 5). 

Here we propose another group of space-time-dependent local scalings 
2(r, t). For definiteness, we shall only consider the case 0 = 2, but we do 
not have to make the restriction to d =  2 space dimensions. Although the 
van Hove theory for a nonconserved order parameter has also 0 = 2, t13) we 
do not make any of the approximations involved in that theory. Rather, it 
is our aim to find the scaling functions merely from their transformation 
properties under local scale transformations. By taking 0 = 2, we mean to 
perform the simplest case study of local, albeit not conformal, scaling 
transformations. The group of the local scaling transformations is the 
Schr6dinger group, which shall be defined in the next section. The 
approach chosen has the advantage of being close in spirit to the earliest 
investigations of conformal invariance in critical phenomena. (14) On a more 
formal level, the comparison of conformal with Schr6dinger invariance 
provides some insight into the characteristic properties of both. 

Our results are as follows: 

1. If the domain of both time and space coordinates is infinite in 
extent and the scaling fields transform covariantly under the Schr6dinger 
group, the two-point function is completely determined, while the three- 
point function is reduced to a scaling form of one variable; see Eqs. (3.12), 
(3.28). For example, this applies to the calculation of time-delayed correla- 

' The restr ict ion to two-dimensional  space is not  really required and could be removed. (j2) 
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tions of systems at equilibrium and at a static critical point, or else to 
lattice diffusion problems. 

2. If the space geometry is semi-infinite, a scaling form for the 
two-point function will be derived; see Eq. (3.35). This may be relevant to 
critical dynamics close to a surface; see ref. 15 for an example. 

3. For a system in a predefined initial state, it can be shown that 
critical relaxation toward equilibrium displays dynamical scaling already at 
intermediate times, (6'7) much later than microscopic times, but also well 
before the late-time regime usually considered. We derive the form of the 
two-point function; see Eq. (3.48). 

4. These results can be reproduced from a variety of exactly solvable 
models. 

5. The Schr6dinger group can be extended to an infinite-dimensional 
group whose Lie algebra contains a Virasoro subalgebra. It can be shown 
that for systems with local interactions Schr/Sdinger invariance follows from 
the requirements of translation invariance in both space and time, rotation 
invariance in space, scale invariance, and Galilei invariance. If no 
anomalies occur, this even holds for the whole infinite-dimensional group. 

The work described in this paper uses background from both confor- 
mal field theory and time-dependent statistical mechanics. To make the 
paper accessible to readers with knowledge in one but not both of these 
fields, we repeat in Section 2 the definition of the Schr6dinger group and 
recall a few well-known facts about Galilei-invariant theories and dynamical 
scaling. Section 3 describes the derivation of the two- and three-point func- 
tions for either infinite or semi-infinite geometries. The Schr/Sdinger Ward 
identity is considered as well, and the nonexistence of nonconventional 
central extensions of the Schr6dinger Lie algebra is shown (Appendix B). 
The discussions of this section follow closely the known derivation of 
correlation functions from conformal invariance. In Section 4, we test and 
confirm the predictions from Schr/Sdinger invariance by calculating two- 
and three-point functions in several exactly solvable and strongly 
anisotropic critical models. In Section 5, we examine the scaling of the 
two-point function for some systems with an anisotropy exponent 0 :~ 2. 
Exact and numerical results indicate a disagreement with the result, 
Eq. (1.4), obtained from two-dimensional conformal invariance and suggest 
an alternative simple scaling form. Section 6 gives our conclusions. 

2. BASIC C O N C E P T S  A N D  T E R M I N O L O G Y  

We begin by recalling some well-known facts about the Schr/Sdinger 
group, Galilean invariance in field theories, and dynamical scaling. 
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2.1. The Schr6dinger Group 

The Schr6dinger group is defined 116'17~ by the following set of transfor- 
mations: 

,~'r + v t  + a t,=~t+fl 
r ~ r ' -  t ~  - - "  ct6--/~,= 1 (2.1) 

),t + 6 ' 7t + 6 ' 

where ct, fl, ),, 6, v and a are real parameters and ~ is a rotation matrix in 
d space dimensions. It is apparent that the Schr6dinger group can be 
obtained from the Galilei group by extending the time translations to the 
full M6bius group Sl(2, R) of fractional real linear transformations in time 
as given in Eq. (2.1). A faithful matrix representation is given by 

,_gag = Ct , 

7 

.L~,G, = 5aeg, (2.2) 

Niederer 1~6~ showed that this group is the maximal kinematical group 
which transforms solutions of the free Schr6dinger equation 

. a  1 a2"~ 
(2.3) 

into other solutions of (2.3), namely (r, t)~-* g(r, t), ~, ~ Tg~b, 

(Tgq/)(r, t)=fg(g-I(r, t)) ~b(g-I(r, t)) (2.4) 

where the companion function fe i s  116} 

fg(r, t) = (Tt + 6)-d/Z 
[ imyr2 + 2~r'(ya--fv)+ ~'aZ--ftv2 + 2),a,] 

x exp -- 2 ?t + 6 (2.5) 

Independently, it was shown by Hagen 1~71 that nonrelativistic free field 
theory is Schr6dinger invariant, treating both scalar and spin-l/2 fields. It 
was also shown that the operators which appear in the conservations laws 
associated with the space-time symmetries can be reformulated to allow the 
statement of Schr6dinger group in d space dimensions can be obtained by 
a group contraction (where the speed of light c ~ ~ )  from the conformal 
group in d +  1 dimensions t~81 provided the mass is conviently rescaled as 
well. Its projective representations as required by (2.4) have been studied 
in detail/~9~ 
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There are many more equations whose kinematical group is isomorphic 
to the Schr6dinger group. It can be shown that the most general potential 
which can be added in (2.3) such that the kinematical group is still 
isomorphic to (2.1) is of the form, up to orthogonal transformations, 
V(r) = v ~2~ ~ i  r~ + Z i  vl ~ri + vC~ Iz~ Further examples are provided by a 
nonlinear SchrSdinger equation, ~21~ or, but with a more general transfor- 
mation law than (2.4), by the Navier-Stokes equation with homogeneous 
pressure or by Burger's equation. ~22~ Higher-order symmetry operators of 
Eq. (2.3) are examined in ref. 23. The Schr6dinger group also appears as a 
dynamical symmetry group for the Dirac monopole or magnetic vortices c24~ 
or in the nonrelativistic N-body problem with inverse-square interac- 
tions. ~251 Similarly, one may treat the diffusion equation by writing 
m-~= 2iD, where D is the diffusion constant. We shall do so for most of 
this paper. In any case, we shall only consider here the realization of the 
Schr6dinger group provided by the free Schr6dinger equation (2.3). Using 
different realizations will in general lead to different results. 

For simplicity, we restrict attention here to fields which are scalar 
under space rotations (so that it is sufficient to take ~ =  1) and shall 
mostly also take just one space dimension d =  1. This is not a serious 
restriction and generalizations are straightforward. 

The set 5at,, = {X_~, Xo, X, ,  Y-,/2, Ym,  Mo} spans the Lie algebra of 
the SchrSdinger group, Eq. (2.1). The generators read (we take d =  1) 

l~ n + l  ,, ~ n ( n + l ) j c t . _ , r  2 X , =  - t"+ ~  t rG 

Y, , ,=-t" '+mOr - m + ~  ~ (2.6) 

M .  = - t " J [  

where the terms ~ J [  come from the companion function. When o# = hn 
is purely imaginary, this corresponds to the Schr6dinger equation where m 
is the mass, while for ~g real, this is the form corresponding to the diffusion 
equation. The commutation relations are 

IX. ,  X.,] = (n - m) X,, + ,,, 

IX,,, Y.,] = ( n / 2 - m )  Y.+., 

IX , ,  Mini = - m M , + , ,  (2.7) 

[Y,,, Y , , , ] = ( n - m ) M , + , ~  

[ Y . , M . , ] = [ M . , M . , ] = O  
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(In more than one space dimension, there are several sets of generators 
Y"~ i =  1 ..... d, but only one set of X,,, where for is replaced by r0r, etc.). 

m ~ 

The commutation relations (2.7) remain valid when the infinite set of 
generators 5 a = {X,,, Y,,,, M,,}, where n is an integer and m is a half-integer, 
is considered. ~26~ The Lie algebra can be decomposed, 5a=6ex~.Sa v, 
where 5ax = {X,,} and Say= { Y,,,, M,}. As we shall see later, these two sub- 
algebras arise in quite distinct physical situations. 

2.2. Gal i le i - lnvar iant  Field Theory  

The Galilei Lie algebra (here for the case d =  1 only) is generated from 
the set i f =  {X_I,  Y-I/2, YJ/2}cSan,." Thus any Schr6dinger-invariant 
theory will have to satisfy the constraints following from Galilean invariance 
as well. These conditions have been well known for a long time tzT~ and 
we briefly recall the properties relevant for us. In fact, it is possible to 
construct a consistent field theory which is Galilei-covariant from the 
following postulates. The simplest example of this is second-quantized 
ordinary nonrelativistic quantum mechanics. 

States are rays in a Hilbert space and the dynamical variables are 
operators in the Hilbert space, with the usual rules for the calculation of 
probabilities. The Galilei group acts by a unitary projective representation 
~ '(g)  in the Hilbert space. If ~b(r, t) is a field of the theory, it is required to 
transform locally 

Jll(g)- l~(r, t )~#(g)=exPI2(v2t+2vr)l~b(r+vt+a,t+fl)  (2.8) 

States are characterized by the Casimir operators, whose eigenvalues are 
mass and spin (if d >  1). Since we deal with projective representations, we 
obtain a unitary representation of a central extension of ff by a one-dimen- 
sional Lie algebra generated by Mo; see Eq. (2.7). This implies, since the 
extension is nontrivial because f# is nonsemisimple, that a physically trivial 
transformation may result in a modification of the phase of the state vector 
which depends on the mass of the system. Galilei covariance thus requires 
the Bargmann superselection rule of the mass, ~zs~ which states that for an 
interaction of particles of the form 

A + B +  . . . - - .A '+B'+ ... (2.9) 

one must have 

mA + r o B +  . . . .  mA,+mB,+  ""  (2.10) 
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This implies that no Galilean field can be Hermitian unless it is massless. 
We see that the mass plays quite a distinct role in nonrelativistic theories 
as compared to relativistic ones. We emphasize that the mass no longer 
describes the deviation from critical behavior in our context, as it does in 
relativistic theories. Masses should, in the light of (2.10), rather be regarded 
as some kind of analog of a charge t27) [this requires the Lagrangian to 
have a U(1) invariance]. Nonvanishing correlations are of the type 

(~b~(r, t)~b*(r', t ' ) )  ~ 6  ....... hY'~.b(r--r', t--t ')  (2.11) 

and similarly for higher-order correlations. This also holds by analytic 
continuation for Euclidean theories. We shall rederive the superselection 
rule, Eq. (2.10), in several cases below. 

A further remark is in order here. In general, in the context of a 
statistical system, the mass will contain nonuniversal factors which merely 
serve to define the time scale. Here we are interested in the ratios of masses 
of different scaling fields, which are universal. 

While the Bargmann superselection rule provides a restriction not 
present in relativistic theories, Galilean field theory is considerably less 
restricted in many other aspects. For example, the consequences of locality 
in Galilean field theory are no longer sufficient to prove either the CPT or 
the spin-statistics theorem; see ref. 27 for a full discussion. 

2.3. Dynamical Scaling 

Finally, we recall some facts about response functions and dynamical 
scaling, following refs. 4 and 29. Consider a scaling field ~b(r, t). In systems 
described by a Hamiltonian one can define its conjugate field h(r, t). Then 
the linear response function z(k, ~o) is defined in momentum-frequency 
space by 

(~(k,  co)) = z(k, co) h(k, tn) (2.12) 

where the field h is taken to be infinitesimal, the average is determined from 
the time-dependent probability distribution in the presence of h, and the 
system is assumed to start from equilibrium at t ~ -oo .  The Fourier trans- 
forms are 

dk f~- dm i(k. 
h(r, t)= f (2x)d j_ - ~ e  ...... Ih(k,t) 

fo f x(k, m) = dt dre" ... .  k.,)G(r, t) 

(2.13) 

(2.14) 
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We are interested in time-delayed correlation functions 

C0(r, t ) =  (~b(r, t)~b(0, 0))j,= o -  (~b(r, t))h= o (~b(O, 0)),,=o (2.15) 

and define its Fourier transform Cr co) according to Eq. (2.13) and the 
equal-time correlation function C0(k) defined as 

_ I  ~ do9 
C~ - ~ ~-n C~ o9) (2.16) 

From causility, it can be shown 129) that the response function x(k, co) is an 
analytic function of the complex frequency o9 in the upper half-plane and 
its real and imaginary parts satisfy the Kramers-Kronig dispersion rela- 
tions. For classical systems with a Hamiltonian, the fluctuation-dissipation 
theorem states 14"29) 

C~(k, co) = 2ks T 3x(k, co) (2.17) 
09 

where 3 denotes the imaginary part. The hypothesis of dynamical scaling 
now asserts that at a static critical point t3"41 

x(k, co) = A/k2, -- acb(~o9 k-o) (2.18) 

in the scaling limit o9--*0, k--*O with ogk o fixed, where O=z is the 
dynamical (anisotropy) exponent, x is a scaling dimension, q5 is a universal 
scaling function, and ~r :~ are nonuniversal constants. 

3. MULTIPOINT CORRELATIONS FROM SCHRODINGER 
INVARIANCE 

We now derive the consequences of Schr6dinger invariance for the 
correlations. In general, we expect a scaling field ~b(r, t) to be characterized 
by its mass Jr its scaling dimension x, and its spin s (which we take to be 
zero throughout, but see ref. 17 for the case of spin 1/2). The discussion will 
be exclusively for d =  1, but the extension to arbitrary d is immediate. The 
transformation of ~b(r, t) will contain terms describing the space-time coor- 
dinate change given by 2(r, t), the scaling as described by the Jacobian of 
2(r, t), and the change in the phase which is a peculiar feature of non- 
relativistic systems. Under infinitesimal coordinate changes, we have the 
transformations 
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n + l  
[X,,d?(r, t)] = t"+lc3t+----~t"rOr 

x) n ( n + l ) d c ' t " - l r 2 + ( n + l ) ~ t "  ~(r, t) (3.1) 
+ - - - -T- -  

( ) [Y,, , ,()(r,t)]= t"+l/20r+ m+-~ ~ t " - t / 2 r  d~(r,t) 

Taking over the conformal terminology of ref. 1, we call a field primary if 
it satisfies (3.1) for all n integer and all m half-integer. A field is called 
quasiprimary if it satisfies (3.1) for the finite-dimensional subalgebra ~ ,  
only. We consider multipoint correlators 

<~o(ro, to)~(rb, to)".~y(r.v, (,,)~: ( .-, t:)> 

of quasiprimary fields and we derive the restrictions following from the 
hypothesis of their covariant transformation under ~ .  We shall use the 
short-hand notation 

0 0 
Oo=Ot---~ ; D~-or"  (3.2) 

We shall not consider explicitly the action of the generator Mo, 
because invariance with respect to it follows from the Bargmann super- 
selection rule. 

3.1. T w o - P o i n t  Funct ion in the  Bulk 

We consider the two-point function 

F= F(r., r6; t., ts)= <~b~(r~, tu) r tb) > (3.3) 

of quasiprimary fields q),.b in the infinite geometry in both time and space. 
Invariance under translations in time and space implies F =  F(r, z), where 
r = ra - rb, Z = t~ -- t b. Invariance under scale transformations generated by 
Xo requires 

1 xu 1 x6) 
t . O ~ + ~ r . D . + T +  tbt?b +~rbDb +-- f F(r, r)=O (3.4) 

which is rewritten as, with x =  �89 + x6), 

(tO, + �89 + x) F(r, z) = 0 (3.5) 
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We write the solution in the form 

F ( r , t ) = t - X G ( ~ )  (3.6) 

which is nothing but the scaling form, Eq. (1.2). New information comes 
from requiring Galilei invariance (Yi/2) 

(t~D,, + J[Jo + thDh -- Jl~rb) F(r, z) 

= (tOt + dI,,ro -- JChrb) F(r, t )  = 0 (3.7) 

and we obtain two conditions 

~ , , -  Jt~ =0 
(3.8) 

(rOt + JCj) F(r, r) = 0 

We recognize in the first of these the Bargmann  superselection rule, 
Eq. (2.10). Combining  with scale invariance (3.6), we find 

G(u)= Go exp ( -  -~-u)  (3.9) 

We remark that the form of F(r, r) in (3.6) is not an arbi trary ansatz. This 
can be seen by first solving the condition of Galilei invariance before using 
scale invariance. 

Finally, invariance under the special Schr6dinger t ransformation Xt 
gives 

(t]a. + t . r .D.  + .fig.r] + x.tu + tbOb + tbrbD6 -- ~'br~ + xbt6) F(r, t )  = 0 

(3.10) 

which is seen as before to lead to the conditions 

X : X a = X  b 

Me,, - ,~'b = 0 (3.11) 

c '  + - ~ ' o 6 =  0 

where the prime denotes the derivative. The last two of these had already 
been obtained before. The final result is, where q~o is a normalizat ion 
constant,  

F=~ ..... bOJta'-ab~O (t~ 2 ta--t ,  _] (3.12) 
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which should be understood in the scaling limit. This had been announced 
before 126~ for the special case of equal masses. Since for a nonconserved 
order parameter van Hove theory leads to a dynamic exponent z = 2, it is 
not surprising that we recover in this case the form Eq. (1.4) as found for 
d =  2 by conformal invariance, t 'll 

3.2. Three -Po int  Funct ion  in t h e  Bulk 

Consider the three-point function 

F =  F(ro, rb, r,.; t~, to, t,.) = (O, ( ro ,  tu) ~bb(r0, to) qJ,*(r,, t,.) ) (3.13) 

Translation invariance in both space and time let Fonly  depend on distances, 
F =  F(r, s; t ,  a),  where 

r = r~ - r c, s = rb - rc, t = t ,  - t~, a = t o - -  t,. (3.14) 

Scale invariance requires that 

i ( t i O i + � 8 9 1 8 9  a)  
i = a  

= [~a~+ ~ , L +  �89 �89 �89 (3.15) 

Making the ansatz 

F(r, s; r, a) = t -P'~r-P-'(r - a ) - m  G(r, s; r, a) (3.16) 

as motivated by the corresponding result for the three-point function as 
obtained from conformal invariance, cl41 we find 

PI -F P2-F p3=I(Xa-}- Xbac Xc) 

(rO~ + aO~ + �89 + �89 G(r, s; r, a)  = 0 
(3.17) 

Note that the relation found between the exponents p~ and the scaling 
dimensions x~ must be satisfied for any scale-invariant system. From Galilei 
invariance we get, with e ~ = e b =  --ec= 1 because of Eq. (2.8) 

i ( t iDi  + e i~ , . r i )  F(r, s; t ,  a)  

= [ t O , + a O , + J l l ,  r + J l b s + ( J / g , + J t g h - d g , . ) r , . ]  F ( r , s ; t ,  ~ ) = 0  

(3.18) 
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which leads to the conditions 

~ ' .  + ~ ' ~ -  ~',. = o 
(3.19) 

(r0r + aO s + Jlar + ~gbS) G(r, s; r, a) = 0 

and we recognize again the Bargmann superselection rule for the masses. 
The equation for G can be further simplified by setting 

G(r, s; z, or)= exp ( Jg" r2 -/r ~ 2 z 2 ~}  H(r,s;z,  a) (3.20) 

Since the first factor is scale invariant, H satisfies the same equation (3.17) 
as does G, but the second equation (3.19) becomes 

(fOr + ads) H(r, s; r, a) = 0 (3.21) 

Finally, invariance under the special Schr6dinger transformation requires 

(t?O;+t;r;D;+~eiJg, .rT+tix;)F(r,s;r,a)=O (3.22) 
i=a 

First, we use the form (3.16). Then we get ( Y + ~ ) G = 0 ,  where ~ is a 
differential operator and 

~ - - = t ~ ( - - p l - - p 3 + x ~ ) + t b ( - - p 2 - - P 3 + X h ) + t c ( - - p t - - p 2 + x c )  (3.23) 

The requirement that ~-- vanishes leads together with scale invariance 
(3.17) to 

1 . ~ 1 P2=-2(r pI=I(xa"kXc--Xb) ,  P3 2(Xa"[-Xb--Xc) (3.24) 

Second, we use Eq. (3.20) and get (~--' + ~ ' ) H = 0 ,  where 

1 "~ f '  = ~r;(~r + -gh - Jr (3.25) 

This vanishes due to the Bargmann superselection rule. The differential 
operator 9 '  finally takes the form, where we use that H is scale as well as 
Galilei-invariant, 

(rzOT + a2O~ + zrO, + asO~) H(r, s; r, a) = 0  (3.26) 

It remains to solve the resulting system of first-order linear partial differen- 
tial equations. This is done in Appendix A, with the result 

H(r, s; r, a) = ~ \ (a - r) az } (3.27) 

8 2 2 / 7 5 / 5 - 6 - 1 7  
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where T =  ~Uob.~ is an arbitrary function. The final result is, with the 
appropriate scaling limits understood, 

F = 6.a ~ + ~t~,.,Hc(t, - to) - c.~a + .~c- .~/2 

x (tb - to)- ex~ +.,-~-.~o~/2 ( t , -  t~) -*~o+x~-~c~a 

x exp I "r ( r= -  r~) 2 Jib (~--rc)2.] 
2 t,--tc 2 tb--t~ _1 

x ~ (  [(r"-r~)(tb-t~)-(rb-r~)(t~-tc)]~)(t. -- ~)(--i-f-~---i-f~)(t~--t~) (3.28) 

In particular, it follows that any three-point function ( ~ b 4 * )  of a massive 
field with itself vanishes. 

The results, Eqs. (3.12) and (3.28), deserve some comments. It is 
instructive to compare them with those for the two-point and the three- 
point functions obtained from the requirement of conformal invariance by 
Polyakov ~14~ (see also refs. 2 and 30). Conformal invariance completely 
specifies the form of the two- and three-point functions in any number of 
space dimensions. Also, two-point correlations of quasiprimary fields must 
vanish if the scaling dimensions are different. We reproduce this result in 
Eq. (3.12), but add the stronger requirement of the Bargmann mass selec- 
tion rule. The exponential behavior of the two-point scaling function is a 
consequence of Galilei invariance, while ~o is merely a normalization. Our 
results do depend on the explicit realization of the Galilei transformation as 
given by the generator Y1/2. If, for example, we had considered the 
SchrSdinger group with a potential present, the realization of the generators 
is different c2~ and we would have found a different form of the correlations. 
Turning to the three-point function, Eq. (3.28), we observe that the purely 
time-dependent factors reproduce the familar form of the conformal three- 
point function which is completely symmetric in the times ta, tb, t,.. 
We then note that this symmetry is not met by the exponential factors, 
determined from Galilei invariance, and we also note the appearance of 
the Bargmann mass selection rule, not present in conformal invariance. 
Generalization of our results to higher space dimension d merely requires 
a check for rotation invariance, which is obviously satisfied. 

3.3. T w o - P o i n t  Function in Semi- inf in i te  Space 

Having studied correlations of quasiprimary fields in the infinite 
geometry, we now consider the effect of surfaces. Consider a free surface at 
r = 0. It is kept invariant under the transformations generated by the sub- 
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algebra Sex, but space translations and Galilei transformations will no 
longer leave the system invariant. Nevertheless, it is known that conformal 
invariance can be used in analogous situations to constrain the two-point 
correlation function.C3~) For quasiprimary fields, we require covariance only 
under the subalgebra 5e x c~ Sen. = { X_ 1, Xo, Xl }. 

Consider the two-point function of quasiprimary fields 

F = F ( r , ,  rb; t , ,  tb)= (~b~(r~, ta) ~b*(rb, tb)) (3.29) 

and we require space points to be in the right half-plane, i.e., r~, r b >10. 
Time translation invariance gives F = F ( r . ,  rb; z), with z = t ~ - t  6. From 
scale invariance we obtain 

b 

Z ( t , O , + � 8 9 1 8 9 1 8 9 1 8 9  (3.30) 
i=a 

I where x = ~(xa +Xb). On the other hand, from the invariance under the 
special Schr6dinger transformation we have, with eo = --eb = 1, 

b 
1 2 

(t2iOi + t ir iOi + 2si,/giri + tix~)F 

= [z28. + zr.D~ + tb(2TO. + roD. + rbDb) 

1 2 1 2 ~,.~brb + q - t b x b ] F  + ~J[~r~-  t~x.  

r 1 2 (z23~ + z . D .  + ~JC.r~ - t 2 ~J[brb + rx~)F=  0 (3.31) 

where in the last equation the scale invariance of F was used. Now, we 
make the ansatz 

2 ra r~ 
F(r~ , rb ;T )=z -XG(u , v ) ,  u = - - ,  v = - -  (3.32) 

T T 

which solves for scale invariance, while Eq. (3.31) gives 

X.~-Xa~-X b 

(uO. -- vOv + �89 -- �89 G(u, v) = 0 
(3.33) 

The general solution of this is found using the method of characteristics, 132~ 

G(u, o) = X(uv) exp( - �89 u - �89 Jt'b v) (3.34) 

where X = g~.b is an arbitrary function. The final result is 

( r.rb ~ e x p (  J[.  r] JOb r~ "] (3.35) 
F =  6 ...... ~(t.-- tb) ..... X \ t .  -- th/  2 t . - -  tb 2 to-- tb/  
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We note that analogously to the conformal result, ~3I) the scaling dimen- 
sions have to agree, while in this case we do not have a constraint on the 
masses Jg,.b, since the system is not Galilei-invariant. 

The function X is partially determined from a consistency conditions. 
We should expect to recover the bulk behavior for large distances to the 
surfaces, that is, for r~rh/3--* ~ .  Therefore, up to normalization, 

Z(u) ~ 6 ++o..aJa~ u ~ ~ (3.36) 

On the other hand, for a free surface where the field vanishes, we expect the 
absence of any correlations and thus 

Z(0)=0 (3.37) 

Indeed, this is exactly the behavior obtained from the method of 
images. We have for the surface correlation Gs in terms of bulk correlations 
Gb 

Gs(r, r'; 3) = Gb(r -- r', 3) -- Gb(r + r', 3) 

= GOT-" {exp [ 2 (r --~t )2] -- exp [ 2/'/' (r ;r')Z] } 
( ~ )  ( Jc'r2 ) 

= 2Gor-X sinh ~ exp 2 r r'2 (3.38) 

and we identify X(u)=2Gosinh(Jgu)  in agreement with the consistency 
conditions (3.36), (3.37). 

Finally, if we were to impose in addition translation invariance in 
space, invariance under Galilei transformations is also implied and we do 
recover the bulk result (3.12) for the two-point function. 

3.4. T w o - P o i n t  Funct ion for  a Nonsta t ionary  S ta te  

We now consider a situation with a boundary condition at a fixed 
time. Boundary conditions of this type will be kept invariant by the 
subalgebra 5at together with both the scale transformation Xo as well as 
the special Schr6dinger transformation X'j (provided the initial state is mass- 
less), or rather its finite-dimensional subalgebra {X o, X1, Y- t / z ,  YI/2, Mo} 
for quasiprimary fields. For example, this may correspond to the situation 
when a system is in a predefined initial state and relaxes toward its equi- 
librium state. 16"7) Consider the two-point function of quasiprimary fields 

F=F(r~,  rb; t . ,  tb)= ( O~(r~, t~) q~*(rb, /h) > (3.39) 
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Invariance under space translations implies F =  F(r; to, tb) with r = ro-r b. 
We next demand invariance under Galilei transformations, with 
s  = --gb = 1 : 

b 

(t~D~+e~Jl~r~)F=[(t~--tb)O~+Jtj~-JIjh]F=O (3.40) 
i = a  

In analogy to what was done before, this implies the Bargmann superselec- 
tion rule J / ,  = ~'b and 

F(r;t"'tb)=G(t"'tb)exp( Jg~2 t~-t~ r2 ) (3.41) 

Scale invariance demands that 

b 

~, (t,O,+�89189 
i = r  

(3.42) 

Inserting (3.41), we find 

G( to, tb)= t ~C~" +"h)aCb(tJtb) (3.43) 

where qS(v) is a yet undetermined function. So far we have 

E  'ror ':l 
- .a..Jr o ~ exp 2 t , -  t b J (3.44) 

Note that we have no condition on the exponents X,,b here. This is the 
form of the two-point function which follows from just Galilei and scale 
invariance. 

We now add the requirement of covariance under the special 
Schr6dinger transformation generated by X~, provided the initial state has 
vanishing mass. If that is the case, we have the additional condition 

b 

Z (t~O~+ t,r,D,+ �89 + tixt)r=o (3.45) 
i = a  

We use the result (3.44) obtained so far and find an equation for ~(v), 

"v(v- 1) ~ ' (v)  + [�89 qS(v)=0 (3.46) 

which has the solution 

tjb(V ) = r v(xh . . . . .  1/2( 1 -- v -l)-(.,-. + xb)/2 (3.47) 
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where ~o is a normalization constant. So the two-point function covariant 
under the algebraically closed set { X0, X~, Y• 1/2, Mo }, but not under X_ ~, 
finally is 

. . . . .  ( t . ~  -(x~ 
F =  6 It. tcbqbo \ ~ 7  (t .  -- to) -('~ 

~/~ ( r " -  rb)2] (3.48) 
x exp 2 t o - t b  / 

The exponents x~, xb are not constrained, since time translation invariance 
was not assumed. In Section 4, we shall consider the relationship of this 
two-point function with response functions in the context of the relaxation 
kinetics of the spherical model. 

3.5. W a r d  Ident i ty  

We now consider the effect of arbitrary coordinate transformations on 
correlations. We suppose that the system under consideration is described 
by a local action in d +  1 dimensions. This is obviously satisfied for static, 
but strongly anisotropic systems with local interactions. For many dynami- 
cal problems in d space dimensions which are at first defined via their 
equation of motion, there exists an equivalent equilibrium problem in d +  1 
dimensions, usually supplemented with "disorder conditions" to maintain 
the strong anisotropy. ~33'34) Then, considering the change of the action 
induced by an arbitrary coordinate transformation, the following identity 
holds (see, e.g., ref. 2): 

(0hi(r1, tl)...6dp~(r,,, ta)...~b,(r,,, t , ) )  
a = l  

+ f  dR dT  Qb~(r~, t~)---~b,,(r,,, t,,) T,j(R, T) )  O~(6rj)(R, T ) = 0  (3.49) 

where we implicitly assume that in the correlators the Bargmann super- 
selection rule is satisfied, the time T is denoted as the zeroth component of 
the coordinate R, and Tv is the stress-energy tensor. As Eq. (3.49) is writ- 
ten, we assume 6~b to contain all variations of the field ~b (including changes 
of its phase) and T U to describe all changes of the action used to calculate 
the averages ( . . . ) .  The discussion presented here remains at the formal 
level of the equations of motion. We discard the possibility of anomalies 
which may arise from renormalization effects. Detailed discussions of these 
are available for conformal invariant theories, I~'z~ but for Schr6dinger 
invariance, the analogous developments have not yet been done. 
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Since correlations are supposed to be invariant under infinitesimal 
Schr6dinger transformations, we obtain a few constraints on the 
stress-energy tensor in complete analogy with the corresponding results for 
conformal invariance, t2~ The form of the 6rj is taken from the generators, 
Eq. (2.6). Rotation invariance implies that Tg is symmetric in space, 

T o. = Tji ,  i, j = 1 ..... d (3.50) 

Scale invariance gives the "trace condition" (here written in Euclidean 
form) 

d 

2Too+ ~ Ti ;=0 (3.51) 
i = 1  

which is the analog of the vanishing trace condition in conformal 
invariancC 2~ and the factor 2 comes from 0 = 2. Equation (3.51) is satisfied 
in free nonrelativistic field theory tiT) (where it is written in Minkowskian 
form). Interacting nonrelativistic field theories may give rise to anomalies. .35) 
From Galilei invariance we find 

Toi = 0, i=  1 ..... d (3.52) 

The requirement of special Schr6dinger invariance does not add any 
further condition on To.. We have thus seen that 

translation invariance in space and time) 
rotation invariance in space | 
anisotropic scale invariance with 0 = 2 ~ = Schr6dinger invariance 
Galilei invariance 
local interactions ) (3.53) 

in analogy to the conformal result. (2) In fact, using formally the equations 
of motion, we may even verify invariance under the entire infinite algebra 
~ .  This is for the time being the only indication that the generalization 
beyond ~ ,  might be sensible. Again, the same type of result also holds for 
conformal invariance (when the central charge vanishes). 

We do not go into a discussion of the possible anomaly structure here. 
As a preliminary exercise to that, we show in Appendix B that the 
Schr6dinger algebra (2.7) does not admit any nonconventional central 
extension besides the familiar Virasoro form for the generators X,, .  

3.6. S U M M A R Y  

The main results of this section are the explicit expressions for the 
two- or three-point Schr6dinger-covariant correlations in either an infinite 
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or a semi-infinite geometry as given in Eqs. (3.12), (3.28), (3.35), (3.48). 
Although the general form is quite similar to the corresponding results 
found from conformai invariance/~4'3~ there are some properties which 
come from the nonrelativistic nature of the symmetrY. The first one is the 
Bargmann superselection rule (281 for the masses. Second, the space dimen- 
sion d has mainly the role of a parameter, at least for the quasiprimary 
fields only considered here, whereas the nontrivial group structure capable 
of extension to an infinite-dimensional algebra only occurs in the "time" 
coordinate. 

We remark that there is a certain analogy between Schr6dinger 
invariance and conformal invariance close to a free surface/3~' In both 
cases, the pair of complex  linear projective transformations characteristic 
for full conformal invariance gets replaced by the subgroup of a single real 
linear projective transformation. 

The results obtained only use (a peculiar realization of) the finite- 
dimensional algebra. It remains an open problem how to extend 
Schr6dinger invariance to the full infinite-dimensional algebra and find the 
scaling functions. 

4. TESTS OF SCHRODINGER INVARIANCE IN EXACTLY 
SOLVABLE MODELS 

We now test the predictions obtained in the last section for some 
correlations in the context of some exactly solvable strongly anisotropic 
critical systems. We do not include here among the tests the well-known 
fact that the Green's functions of the free Schr6dinger equation and the 
diffusion equation reproduce Eq. (3.12) in any space dimension with 
x = d/2. We also refrain from discussing the range of possible applications 
of the models considered. 

4.1. Kinetic Ising Model  w i th  Glauber Dynamics 

Consider the time-dependent one-dimensional model with the classical 
spin Hamiltonian ~r176 -J)Z~=~ sis~§ and s i= +1. To describe the time 
dependence, following Glauber, (36) consider the probability distribution 
function P(s l  ..... sL; t). It is often convenient to describe the evolution of P 
in terms of a master equation (see refs. 29 and 37 for a detailed discussion) 

- ~ e ( s l  ..... s L ; t ) =  - wi(s , )  P(s ,  ..... s L ; t )  

+ ~ w i ( - s i )  P(s i  ..... - s i  ..... sl; t) (4.1) 
i 
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where the wi are the rates describing the transitions between spin con- 
figurations. The following consistency conditions have to be kept. The first 
is probability conservation when summing over all configurations {s} = 
(sl ,-.., st.): 

P({s}; t ) =  1 (4.2) 
{s} 

to be kept at all times. Second, the equilibrium distribution Peq "~ e-fl"~ has 
to be a stationary solution of the master equation, where /7 is the inverse 
temperature. This is usually implemented via detailed balance 

Wi(--Si) expr-f lJsi(s i_ I + si+ 1)] 
(4.3) 

Wi(S#) exp[flJsi(si-1 +si+ 1)] 

Finally, averages are obtained from 

( X ) ( t )  = ~ X({s})P({s};  t) (4.4) 

Glauber (s6) showed that the particular choice 

} wi(si)=~ 1 - } s , ( s , _ l  +si+j) (4.5) 

where c~ is the constant transition rate and 7=tanh(2/~J), renders the 
model completely integrable. We are interested here in his result for the 
time-delayed (connected) two-point function when the system is in thermal 
equilibrium at temperature T, (36) 

G ( r l - r z ,  t l - t 2 )  = (Sr~(tl)sr2(tz))<.=e-~'~rllr-IIIl(otTt) (4.6) 
/ 

where r= r j -  r2, t= t ~ -  tz, v# = tanh(/TJ), I~ is a modified Bessel function, 
and the sum extends over the whole lattice. If there are no correlations 
between spins in the initial state, only the term with l = r would be present. 

To analyze this, recall the asymptotic form, as x --+ oo, (38) 

Ii(x) ~ - (2~x)-l /2exp x-}-s [1 + ( 9 ( x - I ) ]  (4.7) 

and obtain in the scaling limit r ---, o% t --* oo with u = r2/t fixed 

G(r, t) ~- { e x p [ - ( 1  - 7 )  et]}(2~?'et) -l/'- 

f f ( 
x ) e x p ! t - - 2 7 a t j + t ~ o q i t ' e x p l  t 27oc' . ]J 

-- (2=~,)-'t2 exp ( - -  2~t) ,4.8) 
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where in the last equation we performed the zero-temperature limit (since 
the one-dimensional Ising model has its critical point at T =  0). This holds 
exactly for vanishing correlations in the initial state and up to scaling 
corrections otherwise. This is indeed in agreement with the predicted 
two-point function (3.12) and we identify x = 1/2 and ~ / =  1/(2~). 

4.2. Latt ice Di f fusion w i t h  Exclusion 

Consider a system of many particles performing random walks on a 
chain of L sites. Each site can be either empty or  occupied. The dynamics 
is defined as follows. ~34) First, pair all neighboring sites, which can be done 
in two ways, to be labeled d ,  chosen at odd times, and ~ ,  which is chosen 
at even times. At every time step, the dynamics of each pair is as follows. 
If both sites of a pair are either occupied or empty, the state of the pair is 
unchanged. If one site is occupied and one empty, the particle moves to the 
empty site with probability p or stays where it is with probability 1 - p .  
This stochastic rule for updating is applied in parallel to all pairs. 

The time-delayed particle-particle correlation is 

G(r, t ) =  (n(r, t)n(O, O) ), (4.9) 

where n(r, t) = 1 if the site r is occupied at time t and n(r, t) = 0 otherwise. 
The average is first over realizations of all possible time developments and 
second over an ensemble of initial states that is stationary with respect to 
the stochastic process, t341 G was calculated exactly first for p = 1 /2 ,  t341 and 
later for p arbitrary, t391 with the result, for even times t and even sites r 
(similar results are known for the other cases, see ref. 39) 

I t'-I'l'/2((tkr)/2) G(r,t)=p(1-p) P'(~-r.t+ 
k = l  

x((tk221r'/2) p'-21'(1-p,2* ] (4.10) 

where p = NIL is the particle density and N is the number  of  particles on 
the lattice. The limit L ~ co such that p is kept fixed is understood. In the 
scaling limit r, t ~ 0o such that u = r2/t is kept fixed, this simplifies tO (34"391 

G(r, t)= p( l - p)(2n Dt)-1/2 exp ( -  ~--~t ) (4.11) 

and the diffusion constant D = p/(1-p). This agrees with the Schr6dinger 
invariance expectation (3.12), and we have x = 1/2 and J r  = 1/D. Similar 
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results were obtained when quenched weak disorder is added, and it was 
shown that if the spatial disorder correlations decay rapidly enough, the 
same scaling form (4.1 1 ) results with a modified value of the diffusion 
constant D; see ref. 39 for details. 

These results were derived c34 39) by mapping the system onto a six-vertex 
model satisfying a disorder condition. From the transfer matrix #" = e -~H 
the quantum Hamiltonian can be obtained. In the time continuum limit 
r--* ~ such that pz remains constant, the quantum Hamiltonian is 
found (39) to agree with the quantum Hamiltonian obtained directly from 
the master equation written in the form a , P = - H P ,  and reads ~4~ 

L 

H = - � 89  ~ [a;~%'+, + a;!'a;'+, + ' 4a ,a ,+ ,  + (1 - '4 ) (a,  + a,+= ) + "4 - 2 ]  
i = 1  

(4.12) 

where the ~r ~'-''': are Pauli matrices and with '4 = 1 for lattice diffusion. We 
note that this Hamiltonian, but now with A = 0, is also obtained c4~ from 
the master equation of the kinetic Ising model at T =  0 considered above. 
The disorder condition for the vertex model formulation of lattice diffusion 
above makes the model undergo a transition of Pokrovsky-Talapov 
type. ~4-'~ In view of the common scaling form for both .4 = 0  or 1, and 
because the spectrum of H is known to be '4-independent, (4~ we should 
expect this scaling form to hold independently of the value of "4. 

4.3. Lifshitz Point in the Spherical Model 

We now consider a static, but strongly anisotropic system. The model 
is the anisotropic next-nearest-neighbor spherical (ANNNS) model (see 
ref. 43 and references therein). Conventionally, it is defined by the 
Hamiltonian, on a hypercubic lattice, 

~SM = -- ~ Jiicriaj + fl- ~ ~ a~ (4.13) 
i , j  i 

where tr~ are real numbers, and the spherical parameter ~ is determined 
from the constraint ( Z ~ s ~ ) = J V ,  where ,4: is the number of sites. 
Consider the model in D = d' + d dimensions. The couplings Jij are defined 
as follows. First, in all D dimensions, there is a ferromagnetic nearest- 
neighbor interaction of energy J > 0. Second, in the d "parallel" directions, 
there is along the axes an interaction of energy x J  between next nearest 
neighbors. The Fourier transform of Jij is 

J ( k ) = 2 J  cosk i+~:  ~ cos 2k~ {4.14) 
\ i =  I i ~  1 
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If a phase transition occurs, there is at x =  x , . = - 1 / 4  a meeting point 
between a paramagnetic, a ferromagnetic, and an ordered incommensurate 
phase, which is referred to as a Lifshitz point, tt~ which is a strongly 
anisotropic critical point. When d ' =  1, one has 0 = 2 and those coordinates 
in the d "parallel" directions will be referred to as "space," while the one 
remaining direction will be referred to as "time." 

In order to make the Galilei invariance explicit, we consider here a 
variant of this model, which gives the same thermodynamics. The 
Hamiltonian is 

- Z '  * 'r 5Jij(s+ sj+sis*)+fl- Z Is+l-' 
i , j  i 

(4.15) 

where now si is complex and the spherical constraint is 

( Z  Is+12/--- 2Jlr (4.16) 

We introduce the Fourier transform of the spin variable 

s, = (2n) 0/2 1 dk Ilk elk'" (4.17) 

and get 

,~= - f d k  [ J ( k ) - / 3 - ' ~ ]  I~k12= -fdkA(k)Ipkl 2 (4.18) 

The partition function is .~ = S ~ s  e - l ~ .  Since 

( ~ > =  ( ~ , )  =0,  (l~kl 2) = A - ' ( k )  (4.19) 

the spherical constraint (4.16) becomes S dk A-~(k) = 2.A/', which is exactly 
the same as obtained from o~SM (see, e.g., ref. 44) and the free energy is 
F = - / 3 - J  In ~ = 2FsM, where FsM is the free energy obtained from the 
Hamiltonian ~SM. Consequently, the model defined by ~ is in the same 
universality class as the one defined by ~ffSM. In particular, the critical 
point is characterized by the condition ~ = j~JD. The lower critical dimen- 
sion is at D = 3, the upper critical dimension at D = 7, provided d'= 1, 
which we assume from now on. 

Consider the two-point function C(a-b)=~(s,s~),  where 9t 
denotes the real part and 
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kBT 

• exp[i(l'a-k'b)]expI-fdmA(m)tl~.12 ] 

(2re) -D kB T [  dk A -~(k) exp[ ik  �9 (a - b)]  
J 

(4.20) 

This has been calculated for integer dimensions D. (45) In the scaling limit 
r--* 00, t--* oo with r2/t fixed (r and t are the distances in space and time 
between the points a and b) the result is 

C ( a - b )  = C(r, t ) =  d2t-'D-3V2~(D43 '~tr2) 
(4.21) ~r 2 ' -o  ,it/2 

The function ~(a,  x) is given in Table I/451 
Compar ison with Schr6dinger invariance, Eq. (3.12), shows agreement 

for the case D = 6, while the scaling function has a different form in the 
other cases. Recall that the system given by the Hamiltonian o~ has a 
dispersion relation of the form 

E2-1----~k4=(EW~-~nk2)(E-~-~k2)=O4m 2 (4.22, 

rather than E=k2/(2m), which was used for making the Schr6dinger- 
invariance predictions. We can only expect to recover the results of 
Schr6dinger invariance if the propagator  actually solves the free Schr6dinger 

Table I. Scaling Function q~(a. x) at the Lifshitz Point of the 
Spherical Model and Leading Asymptotic Behavior for x-~ o0" 

a ~(a, x) Asymptotics 

�88 xl/2[l_ 1/4(A'I2) + I1/4(xl2)] KI/4(xI2 } 2X-1 /2  

l -(n2x12) TM [1_ i/4(x) -- L _ 1,4(x)] [2/F( 1/4)] x-  l 
e - x  

1 1//-(3/4) + v/~ (x/2) 3/" [L~/4(x)-/~/4(x)] - 1/[2/'(3/4)] x -2 

"1. and K, are modified Bessel functions and L, is as modified Struve function. 
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equat ion,  and not  jus t  a more  general  four th-order  differential equat ion.  We 
see this to be the case for D = 6 from Table  I and concentra te  on this from 
now on. 

In order  to test the predict ion for two- and three-point  correlat ions,  
we consider  several scaling fields as defined in Table  II. We also give the 
scaling dimensions and the masses (in units of the mass of the field a)  of 
these fields. Concerning the field a, we can confirm its values for 2% and vo 
from Eq. (4.21). 

The calculat ion of the other  corre la t ions  is simple because, since 
A ( - k ) = A ( k ) ,  the imaginary  par t  of ( s ~ s ~ )  vanishes and we have 
C ( a  - b )  = (s.s~). 

Consider  the two-point  functions first. [ .From now on, a, b, c denote  
space-t ime vectors and we also write a = (r~, t~), etc.]  Obviously ,  ( e . ) =  0. 
Then 

( ~.~* ) = ( s.so, s~s*, ) = C ( a -  b ) C(a'  - b')  + C ( a -  b') C(a '  - b ) 

21- C(a - b) ]  2 = 2,~r 2X~ (4.23) 

where in the second line the scaling limit was taken and we confirm the 
result given in Table II. Next,  we have ( r / a ) =  C ( a - a ' ) = c o n s t .  Then the 
connected two-poin t  function is 

�9 , [ - 2.xod~4 ( rlorlb ) ,. = (So S.,Sb Sb, ),. = C(a -- b' )  C(b - a')  ~- (4.24) 

whereas the exponent ia l  terms cancel. Final ly,  we have ( S o ) =  0 and 

= (S.S.,S~,,SbSh, Sb,.) = 6 [ C ( a - - b ) ]  3 =  6z~crt-3X'e -0/2~'~'/' (4.25) 

Table II. Scalar Scaling Fields Arising at the  
Lifshitz Point  of  the Spherical  Mode l  at D - - 6  a 

a, s. 3/2 1 sr 
e= s.s., 3 2 V/'2.& 2 
~= sis., 3 0 .zl 2 

.S. s.s,,s.. 9/2 3 .vf6.~ 3 

a Also given are scaling dimensions x~, masses ./t'~ in units of the 
mass ./t' o, and the normalization such that v~-~b has r = 1 in 
Eq. (3.12). a' denotes a space-time point on a neighboring site of 
the point given by a. 
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and we have verified all entries in Table II. It is straightforward to verify 
that 

( a ~ * )  = (a~r/b) = ( a ~ Z * )  = (~or/b) = ( ~ X * )  = (r/~X~') = 0  (4.26) 

This fully confirms the SchrSdinger two-point function, Eq. (3.12). 
At this stage, we clearly recognize the difference between the models 

described by afSm and acg, respectively, from the point of view of 
SchrSdinger (in fact already Galilean) invariance. The two fields ~ and r/ 
have the same scaling dimension, but different masses. In the context of the 
model described by afsm, however, these two distinct fields get lumped 
together into just one field, g, say. Correlations of g will in general n o t  

satisfy Galilean invariance. On the other hand, there is just a single order- 
parameter field a. Since in many applications one is only interested in the 
order-parameter correlations with itself, it is for that restricted purpose 
enough to stay with the conventional form of JfSM, rather than go to of' 
with the correct Galilean transformation properties. 

We now turn to the three-point functions. To check the Bargmann 
superselection rule, one may verify that, for example 

( s ~ s b s * )  = ( ~ . e b ~ * )  = ( r l ~ t r b ~ * ) c =  ( a r a b  S * )  = ( e~eb  S * )  = 0  (4.27) 

A nonvanishing correlation is 

( s o s o s c  s c , )  

= C ( a  - c) C ( b  - c ' )  + C ( a  - c ' )  C ( b  - c)  

~- 2 C ( a  - c)  C ( b  - c)  (4.28) 

Since x , = 2 x a ,  this agrees indeed with the prediction (3.28) from 
Schr6dinger invariance and we identify the scaling function g* .. . .  = v/2, 
which is a constant, and we have used the normalizaion given in Table II. 
Another check of the Bargmann superselection rule is provided by showing 
that ( ~ a b a * )  = 0. Furthermore, 

~- 6 C ( a  - c ) [ C ( b  - c)] ~ 

= 6ag6(t, - t,.) . . . .  (to - t~) -z~" e - ~ " - ' ~ 2 / 2 ~ " -  'r c'h- ~=/"~-" J 

(4.29) 

which from Table II is seen to agree with (3.28). For normalized fields we 
identify gt , , ,s= x//3. Apparently, the massive scaling fields do reproduce 
the predictions of Schr6dinger invariance. 



1050 Henkel 

Finally, we look at some examples with the massless field q whose 
correlations are not immediately zero. For  example, 

( r l ~ a b a , *  ), .  = ( s ~ s , , s b s c  ), .  "" C ( a - b )  C ( c - a )  (4.30) 

We denote a = (ru, ta) and get 

( q o G  b f f  , y ) c = ~r t,, - t b ) ..... ( t,, - t,. ) .. . . .  e--(ra-- r h } 2 / 2 [ t u  - ,hi e +Ira--r,.)2/2It~ - t~l 

(4.31) 

which indeed agrees with (3.28) [recall from Eq. (2.8) that a* picks up a 
phase opposi te  to a ] ,  since x ,  = 2x,~. Using normalized fields, we identify 
~ , , ,o  = 1. Next,  consider 

O t o ~ , *  >, .  = * * * ( s ~  S,,ShSb,S,.  S,., ) , .  

"~ 4 C ( b  --  a )  C ( a  - c)  C ( b  - c)  

= 4=~6[(tb - t , , ) ( t ,  - t,.)(th - t , ,)] ..... 

x exp( - �89 + d, . , .  + db. , .]  ) (4.32) 

where A , . h  = ( r , -  r h ) 2 / ( t , -  t b) = - -dh ,  o. We verify that  

[ ( r , -  r , . ) ( t h -  t , . ) -  (r b - - r , . ) ( t o -  t,.)] 2 
ct := zJ,,.~ + A,.., + A b . , . -  (4.33) 

( t ~ - - t ~ ) ( t ~ - - t ~ ) ( t b - - t , . )  

has exactly the form of the argument  of the scaling function occurring in 
(3.28). Then the argument  of the exponential  in the last line in (4.32) 
becomes eft2-d~., . .  Compar ing  now with (3.28), we see that the powers of 
the t~ agree with x~ = x ,  = 2x~ and the masses agree with Jr = 2, , /#,  = 0 as 
expected form Table II. We finally identify the scaling function ~u, , .du)= 
2 exp(u/2) for normalized fields. Finally, we consider 

( q o q ~ q , . ) , .  = �9 . �9 ( s o  sa'st,  sb's,, so' ) c 

"~ C ( a  - b )  C ( c  - a )  C ( b  - c)  + C ( a  - c )  C ( b  - a )  C ( c  - b )  

= d 6 [ ( t , -  t ~ , ) ( t , . -  t , , ) ( t  h - t , . )]  . . . .  

• {exp( l --~[d.,h + d,.~+ dh.,,]) 

+ exp( - �89 + da,,. + d , . . b ] ) }  (4.34) 

The very fact that  this correlation does not vanish again confirms that  the 
field q is massless. We use again (4.33) and find, identifying ~u, , . , (u)= 
2 cosh(u/2), complete agreement  with the prediction, Eq. (3.28). 
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4.4. Relaxation Kinetics of the Spherical Model 

Having studied in some detail the case of a setting of infinite extent in 
both time and space directions, we now look into one example with a 
macroscopically prepared initial state which is not the equilibrium state 
and the system is then allowed to relax toward equilibrium. While for very 
long times we are back to the dynamical scaling considered so far, it was 
realized 16"71 that already the intermediate stages of the relaxation process 
display universal behavior. Since we are merely interested in the special 
case of a dynamical exponent z = 2, we concentrate here on the example of 
the n -*  oo limit of the O(n) vector model, with a nonconserved order 
parameter. Since for nonequilibrium systems it is the response function 
which satisfies the analyticity in frequency space (see Section 2), rather 
than the correlation function, we shall look for a correspondence of the 
two-point function obtained in Eq. (3.48) with response functions. We are 
interested in the two-time response function Gk(t, t') which measures the 
response of the field ~ at time t to a thermal noise at time t ' .  (7) Starting 
from an initial state without correlations 3 and quenching the system to a 
temperature T~< To, we find the response function (with time ordering 
t > t' understood) 16'71 

Gk(t, t') = (t/t') ~ exp[ - 2k2(t - t ' ) ]  (4.35) 

where 2 is a constant and, depending on the final temperature, 

( l - d / 4  if T =  Tc 16) (4.36) 
a = ~ d / 4  if T=017~ 

In the spherical model limit, thermal noise can be shown to be irrelevant 
below the critical point (7~ and this is thought to hold in general. Fourier 
transformation in space gives 

( ~ ) a / 2 ( t ) ~  ( 1 r 2 ) 
G ( r ; t , t ' ) =  -fi ( t - t ' ) - a / 2 e x p  4 2 2 t - t , .  (4.37) 

This is indeed fully consistent with the result (3.48) for the two-point 
function. We can identify ~ = 1/(2). 2) and the exponents 

d 3d 
x o = -; , X b if T = 0  

4 /4 

3d d 
x ,  = - ~ - -  1, X b = l + ~  if T=T, .  

(4.38) 

and we explicitly see that xa and Xb are in general distinct. 

3 The  case of  a co r re la ted  initial  s ta te  before the quench  to T =  0 leads for  the n --, oo limit to 
the same  type of  result  a n d  only  affects the value of  a/7~ 

822/75/5-6-18 
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An interesting case occurs when xa = Xb. We can then take the limit 
th--* 0 and find from Eq. (3.48) for this particular two-point function 

..... exP E 1 2 (4.39) 

This should correspond to the single-time response function Gk(t), which 
measures the response of the field ~b at time t to a fluctuation in ~ at 
t ime0J 7~ In the spherical model, this takes the form, for a quench to 
T =  O, (7) 

G(r; t, 0 ) =  (~o) -a/4 exp ( 4).21t ) (4.40) 

where t o is some constant (which serves to define the scaling regime t >> to). 
From Eq. (4.39) we read off x,,=d/4, in agreement with the first of 
Eqs. (4.38), as it should be. 

5. S O M E  R E M A R K S  BEYOND 0 = 2  

Since for generic values of the anisotropy exponent 0 there is at 
present no general approach available, we content ourselves with a few 
results from selected models. We do not investigate here whether it might 
be possible to achieve Galilean invariance [which at least in the form used 
here requires a U(I) symmetry in the Lagrangians of the respective 
theories], but merely ask for the phenomenological behavior of the 
two-point function. The only aim of this section is to submit the conformal 
invariance result (1.4) tltl to a test. The fact that there are systems with 
0 :/: 2 which appear not to satisfy that prediction had been the origin of this 
whole investigation. 

5.1. Lifshitz Points of Higher Order in the 
Spherical Model  

We come back to the ANNNS model introduced earlier. Now, we add 
further interaction terms along the axes denoted as "space" dimensions. 
Since we are only interested here in the spin-spin correlation, it is sufficient 
for us to consider the real Hamiltonian ~SM, Eq. (4.13). The Fourier trans- 
form of the couplings now is 

J(k) = 2J cos k ,+  xi cos[(i  + 1)kj] (5.1) 
i 1 j = l  i = l  
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Previously, we had taken x =  h~ 1 to be the only nonvanishing coupling. 
With several of the x~ nonzero, the phase diagram will contain lines of 
Lifshitz points (also called Lifshitz points of first order, where L = 2) which 
end in a Lifshitz point of second order (with L = 3 ) ,  in analogy to the 
definition of multicritical points; see ref. 43 for a review. Lifshitz points of 
higher order are defined analogously. At a Lifshitz point of order L - -  1, we 
have 

D d 

J(k)"2JD+d ~,-{ ~ k~-ct ~ k]' +... (5.2) 
i = 1  . / = d +  1 j = l  

which defines the readily calculable constant cL. When d ' =  1, the 
anisotropy exponent is 0 = L. We are interested in the critical correlation 
function C ( a - b ) =  (aaab). This can be calculated exactly3 45~ As we had 
already seen for Lifshitz points of first order above, the correlations of the 
model considered here will only in special cases solve the dispersion rela- 
tion E~k ~ rather than E2~k 2~ This should be the case if the scaling 
function does not just show a power-law behavior for large values of  u. 
This is the case if 4 

D=L+2+2m, m = l  ..... L - 1  (5.3) 

Then the critical two-point  function is, in the scaling limit r ~ m, t ~ 
with u = r~ fixed, 145~ 

( 2m+l. 2 IlL rz) 
C(r,t)=~t..ot-~z"+lvtZ L, 2L '4LeVitt 57-s (5.4) 

where Z can be expressed as a finite sum of generalized hypergeometric 
functions and dL.o  is a known nonuniversal constant. Here we merely 
consider the behavior for large values of the scaling variable u, to leading 
order, 14sl 

C ( r ,  t )  "~ ~ L ,  o t - {2m + 1 ) /Lbl (O - 3 0 1 / [ 2 0 { 0  - 1 ) ]  

x exp[C~LCOS(2L--~)ul/'~ ] 

[ (~ L )u'/'~ rt L D22L ] (5.5) 
• cos c~ Lsin ~ + 2 L - 1  

4 Equation (2.22) in ref. 45, contains a typographic error and correctly reads a= ~d- 
[ ( L -  l)/2L]m- 1 = �89 
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where ~L.o and c-gL > 0 are known nonuniversal constants. We remark that 
only the power prefactor of the scaling function depends on D, the rest of 
the scaling function depends in the large-u limit only on L. 

Let us compare this result with the prediction (1.4) following from 
conformal invariance. (tt) While conformal invariance gives for a noncon- 
served order parameter a simple exponential behavior for the scaling 

function,  we rather find for the higher-order Lifshitz points (L>~3) a 
stretched-exponential behayior. The two forms only agree for 0 = 2. On the 
other hand, for a conserved order parameter the conformal invariance 
scaling function for u large is of the form (~) 

~O(u) ~ u -  2"/3:e -"'/~ cos(x//3 u '/3) 

which for z = 4  is the van Hove theory. It is interesting to note that for 
L = 4, the ANNNS model reproduces the same behavior. 

Finally, we look into the case where 0 = 1/2. This is realized if d =  1 
and L = 2. Now the direction parallel to the next-nearest-neighbor interac- 
tion will be interpreted as "time" and the other directions are referred to as 
"space." For D = 4 ,  we find again an exponential-like behavior for the 
spin-spin two-point function (45) 

C(r, t)  ~ 1 - 3 / 2 u - 3  exp( - � 89  1/(~ 11) (5.6) 

in the scaling limit with u = r~/2/t fixed and 0 = I/2. Again, this is different 
from the conformal invariance prediction (1.4). 

5.2. D i rec ted  Perco la t ion  

As a further example for a strongly anisotropic critical system we 
consider directed percolation in 1 + 1 dimensions (for a review, see ref. 9). 
In percolation, sites or bonds are filled at random with probability p and 
percolation proceeds along paths between occupied nearest-neighbor links. 
In directed percolation, there is in addition a preferred direction and per- 
colation is allowed to proceed only in one sense along this direction. 
This preferred direction is called "time" and the orthogonal ones "space." 
Consider the pair connectedness G(r, r'), which is a measure of the prob- 
ability that sites at r and r'  are connected by a percolating path. It is well 
known that there is a critical value Pc such that one has the scaling form 

G(r,  t)  = s~c t -2a /" l l~ (~v) ,  v = r l t  "• (5.7) 

where fl, v• and v N are critical exponents, the anisotropy exponent is 0 = 
v H / v i ,  and r and t measure the "space" and "time" distances, respectively. 
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Precise numerical values for Pc on various lattices and for the exponents 
have been obtained. (46'47~ For  our  purposes it is enough to notice that 
in (1 + 1) dimensions, to which we restrict ourselves here, we have 
0 -- 1.5807. (47) 

Benzoni ~46~ studied the pair connectedness by calculating numerically 
the moments  

i 
c~o  

X~"l= ssr dv [vl" qb(~v) (5.8) 

and verified that the ratios 

rz( l  ).]2 ix(2)'] 2 rz(2)'] 2 (5.9) 
C -  x~o)x(2) , F =  x~o)x~4~ , G - X~ )X(3----- S 

are independent of the nonuniversal scale factors ~r and ~ and should 
therefore be universal. A careful numerical computat ion ~461 then yields 
numerical values for C, F, and G for various lattices of  both directed site 
and directed bond percolation. The results are in full agreement with 
universality. (46) 

We proceed to analyze these results in the following way. We try the 
ansatz for the scaling function ~(v) 

�9 ( v )  = Ivl b exp(-v ~) (5.10) 

where a, b are constants to be determined. Then 
X ~'' = 2 a -  IF((n  + b + 1 )/a). We now fit this form to Benzoni's ~46~ numerical 
results for C, F, and G and find 

a =  2 .49_  0.16, b =  -0.016__+0.03 from C 

a = 2.58_+ 0.12, b =  - 0 . 0 2 3 + 0 . 0 3  f r o m F  (5.11) 

a = 2.62 + 0.17, b = -0 .023 _ 0.07 from G 

with the mean values a = 2.56(7) and b = -0.02(3).  Since the scaling s 
tions ~(v)  is finite for v = 0 ,  ~46~ we interpret this result as implying that 
b = 0. In Table III  we give the results for a as found using the ansatz (5.10) 
with b = 0 from the ratios C, F, and G and various realizations of directed 
percolation. Note  that the estimates for a obtained from different moments  
and different lattice realizations of directed percolation are the same, which 
means that the chosen ansatz does indeed describe the available data. 
From all this we conclude 

a=2 .6_+0 .2  (5.12) 
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Table III. Exponent  a De te rmined  f r o m  M o m e n t  Rat ios 
C, F, G for  Var ious  Real izat ions o f  D i rected  Perco la t ion  ~ 

Ratio 1 2 3 4 5 

C 2.41 2.56 2.49 2.24 2.39 
F 2.50 2.69 2.69 2.32 2.49 
G 2.54 2.74 2.65 2.37 2.54 

" I, square bond; 2, square site; 3, square site-band; 4, triangular 
bond; 5, triangular site. 

Making contact with our previous results, formulated in terms of the scal- 
ing variable u = v ~  r~ we obtain from (5.10) 

0 
a = -  ~ 2.72... (5.13) 

0 - 1  

using the known value of 0. Comparison of (5.12) and (5.13) implies that 
also in this class of models the two-point function scaling function appears 
to be consistent with the s a m e  stretched-exponential form as already 
observed for the Lifshitz points of the spherical model and in disagreement 
with conformal invariance, Eq. (1.4). It is remarkable that, although the 
Lagrangians of the ANNNS model and directed percolation are quite dis- 
tinct [in particular, the Lagrangian of Reggeon field theory, which is in the 
same universality class as directed percolation, certainly has no apparent 
U(1) symmetry],  these distinctions are not reflected in the large-u behavior 
of the two-point functions. 

6.  C O N C L U S I O N S  

In this paper we have examined the simplest consequences of the 
hypothesis of local dynamical scaling with space-time-dependent local 
rescaling factors 2(r, t). We have seen that for the special case of an 
anisotropy (or dynamical) exponent 0 = 2, the Schr6dinger group, which is 
the nonrelativistic limit of the conformal group, is a sensible candidate for 
a group of local scale transformations. The treatment of Schr6dinger 
invariance (of quasiprimary fields) is in many respects quite analogous to 
conformal invariance. However, there are a few distinctions, the main one 
being the role of the phase transformation, which is not present in the 
conformal group. We hope that the experience obtained in this simplest 
nonconformal case may become useful for the extension of the method to 
generic anisotropy exponents 0. We have derived the form of the two-point 
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and three-point functions for both infinite space and time [Eqs. (3.12) and 
(3.28)-I and for the two-point function also if either space or time is restric- 
ted to the half-infinite space [Eqs. (3.35) and (3.48)]. The results obtained 
are in agreement with and extend those following from the weaker restric- 
tions of Galilean invariance. We observe the relationship with correlation 
functions for static but strongly anisotropic systems, but with the response 
functions for systems out of equilibrium. 

The Lie algebra of the Schr6dinger group can be naturally extended to 
an infinite-dimensional one. We have not solved the problem of how to use 
this infinite algebra to calculate the critical exponents and the scaling func- 
tions in the correlations which are left undermined in this work. We hope 
to come back to this in the future. 

Several exactly solvable statistical models with anisotropy exponent 
0 = 2 were seen to reproduce the results of Schr6dinger invariance for the 
two- and three-point functions. In particular, we have seen that due atten- 
tion must be paid for correctly implementing the changes of the phases of 
scaling fields as demanded by Galilean invariance. This requires the 
Lagrangians of the models to be considered to have a global U(1) sym- 
metry. Since many known systems, although having 0 = 2, do not have this 
property, it remains to be seen whether the concept of Galilean invariance 
can be conveniently extended to deal with these more general situations. 

Evidence from some models with anisotropy exponent 0 # 2 suggests 
that, at least for large values of the scaling variable u = r~ the two-point 
scaling correlation function might behave as 

@(u) ~ exp( - u l/(~ l)) (6.1) 

(where oscillating and power-law prefactors as well as nonuniversal scale 
factors were suppressed). We have found examples for O=n, with any 
integer n >/3, for 0 = 1.58... and for 0 = 1/2 [for which the exact scaling 
function (5.6) is known].  This finding is in disagreement with the form 
(1.4) suggested by using conformal invariance in space. 

APPENDIX  A. SOLUTION OF A S Y S T E M  OF LINEAR 
DIFFERENTIAL E Q U A T I O N S  

We derive the general solution H = H(r, s; z, a) of the following system 
of differential equations: 

(~0~ + aO~ + �89 + �89 = 0 

(rOr+aOs)H=O (A.I) 

(CO~ + ~20~ + zrO, + asa~)H = 0 
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The technique consists of subsequent solution and resubstitution. ~32~ The 
second of Eqs. (A.1) is solved by 

t" S 
H = / t ( t ;  r, a), t . . . .  (A.2) 

T 0" 

while the other two equations become 

(rO~ + crO, - �89  

(~zG + a20, )FI= 0 
(A.3) 

The first of those is solved by 

ffl = H(u ,  v), u = rt 2, v = at 2 (A.4) 

and the second one becomes 

/ , /20  u .~ z +v-O, . )H=O (A.5) 

with the solution /~=  ~ U ( u - l - v - l ) ,  where ~u is an arbitrary function. 
Backsubstitution then yields the result (3.27) in the text. 

APPENDIX B. IMPOSSIBIL ITY OF N O N C O N V E N T I O N A L  
CENTRAL EXTENSIONS 

Consider the centrally extended (infinite) Schr6dinger algebra 

C 3 
[J(,,, X,,,] = (n - m) X,, + ,, + --~ (n - n) 6, +,,.o 

Y,,,] = ( ; - m ) Y , , + , , ,  + D(n ,m )  Ix,,, 

I X . ,  M. , ]  = -raM,,+,,, + E(n, m) (B.1) 

[Y,,, Y m ] = ( n - m ) M , , + . , +  A ( n , m )  

E r , ,  M,,,] = F(n, m) 

[ M,,, Mm] = Kn6,,+,,,.o 

where A, D, E, and F are numbers and c and K are constants. The special 
form of the central extensions for X, and M,, is well known. We show that, 
with the only exception of c, these central extensions either have to vanish 
or can be reabsorbed into the generators. 



Schr6dinger Invariance 1059 

This follows from the Jacobi identities. Begin with D(n, k). Consider 
IX,,  IX,,, Y,]]  and their cyclic permutations. This implies 

~  / n "x 
m.q- k ) - ~ - k )  D(m, n + k ) -  ( n - m )  D(n + m, k)=O 

\ - - /  

(B.2) 

Let n = 0. It follows that [besides D(0, 0) = 0] 

l m-2kD(O,  - ( 2 - k )  d(m+k) (B.3) D(m, k) = 2 rn +k 

which defines d(k). Turning to E(n, m), consider [X,,, [X,,,, M1]] and their 
cyclic permutations. This implies 

- I E ( n , m + l ) + l E ( m , n + l ) - ( n - m ) E ( n - m , l ) = O  . (B.4) 

Now take m = 0  in (B.4) and then either / = 0  or n + l = 0 ,  implying 
E(n, 0 ) = 0  for all n. We therefore write E(n,m)=mg(n,m). Inserting in 
(B.4) and taking m = 0 ,  we find that g(n, 1)=g(O,n+l)+f,,+t.oe(n)+ 
61.og(n). With the definitions ~(O,n)=e(n) and q ( n ) = - n e ( n ) ,  we have 
E(n, m) = me(n + m) + q(n) 6,,+,,.o. Backsubstitution into (B.4) implies 

(n + m)[q(n ) - q(m)] = ( n - m )  q(n - m ) (B.5) 

Let n = 0  and get q(n)=q(-n) .  Let n + m = 0  to see that r/(2n) = 0  for all 
n. Taking m = 2n, we get q(n)= - �89 Consequently, q(n)= 0 for all n. 
Turning to A ( m , k ) = - A ( k , m ) ,  consider EX,,, [Y,,,, Yk]] and permuta- 
tions. We get 

(B.6) 

We use the result for E(n, m), the antisymmetry of A(m, k), insert in (B.6), 
put n = 0 ,  and divide by m + k  to get A ( k , m ) = ( m - k ) e ( m + k ) +  
a(k) cSk+,,,o, with a(k)= - a ( - k ) .  Backsubstitution into (B.6) then implies 
(3n/2 + m) a ( - m )  = (n/2 - m) a(n + m). We now choose n = 2m and get 
a (m)=0 .  To see that K = 0 ,  consider [Y,,  [Y,,, M~]] and its permuta- 
tions to get (n--m)Kn6,,+,,+k,o=O. Finally, we turn to F(m, k) and 
consider FX,, [Y,,, M~.]] and permutations to obtain 

kF(m, n + k ) - ( 2 - m )  F(n + m, k)=O (B.7) 
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Put n = 0  to find F(m, k)=f(m)6, , ,+, .o .  We now have to distinguish two 
cases. (i) The index m of Y,,, is half-integer. Since the index k of Mk is 
always integer, we directly have F(m,k)=O. (i i)The index m of Y,, is 
integer. Backsubstitution into (B.7) then gives 

) f(n ( n + m ) f ( m ) +  ~ - -m  m ) = 0  (B.8) 

Let n + m = 0 and find f (0 )  = 0. Then, let m = 0 and get f (n )  = - 2 f ( 0 )  = 0. 
Consequently, the only surviving terms are given by d(m) and e(n). 

These can be absorbed into the generators by defining )91, = M,, - e(n) and 
9,,, = Y , , - d ( m) .  The only central term remaining is the one parametrized 
by c. This proves the assertion. 
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